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SUMMARY

Unsteady interfacial problems, considered in an Eulerian form, are studied. The phenomena are modeled
using the incompressible viscous Navier–Stokes equations to get the velocity field and an advection
equation to predict interface evolutions. The momentum equation is solved by means of an implicit
hybrid augmented Lagrangian–Projection method, whereas an explicit characteristic method coupled
with a TVD SUPERBEE scheme is applied to the advection equation. The velocity components and the
pressure are discretized on staggered grids with finite volumes. Emphasis is on the accuracy and
robustness of the techniques described before. A precise explanation on the validation phase will be
given, which uses such tests as the advection of a step function or Zalesak’s problem to improve the
calculation of the interface. The global approach is used on a physically hard interfacial test with strong
disparities between viscosities and densities. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Even if formidable difficulties are encountered in both experimental and numerical work on
3D multi-phase flows, a large number of natural and technological processes imply the
understanding of such problems [28]. Presented in this paper is a full numerical method, easy
to implement in 3D, dedicated to multi-phase flows and able to solve strongly variable
characteristic flows (viscosity and density ratios \104).

In incompressible multi-phase flow problems, to estimate precisely free-surface evolutions,
verifying the incompressibility constraint through the interface, with a nearly computer
precision error, is primordial. To solve precisely the incompressible viscous Navier–Stokes
equations, the projection method (see Goda [1]) is a good way of getting a velocity field
verifying the constraint div(u� )=0, assuming an error of 10−13 (computing error). In our
problem, the difficulty is due to the strong disparity of density and viscosity in the different
fluids. Indeed, when we solve the Poisson equation, we need to do too many iterations to find
the pressure under the constraint div(u� )=0. Another difficulty lies in the coupled Dirichlet–
Neumann boundary conditions of our problem: in fact, the projection method is efficient when
you only use Neumann boundary conditions. To speed the solving and to get pretty good
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estimations of the Neumann boundary conditions, we have coupled the projection method
with an augmented Lagrangian method (see Fortin and Glowinsky [2]). The augmented
Lagrangian solves the Navier–Stokes equations giving a velocity field verifying the constraint
div(u� )=0 with a 10−5 precision. The velocity field is used as a valuator for the first step of
the projection method. The Poisson equation is then solved. This way we have obtained a
more accurate hybrid method, which is better than the augmented Lagrangian method, and
performs better than the projection one.

Currently, there are two different ways of modeling interfacial flows. On the one hand, you
can use adaptative grids in order to describe precisely the physical phenomena on the interface
(surface tension, surface waves, etc.). In fact, this approach considers a Lagrangian or
Lagrangian–Eulerian grid adapting its solving to the surface evolutions (see Magnaudet [3]
and Floryan [4]). Magnaudet has obtained very good results studying bubble oscillations in
2D. However, this adaptative method becomes unusable as soon as the variations of the
interface become significant. Indeed, it is very time-consuming to get a refined grid while
preserving the good properties of orthogonality when the surface varies strongly. The use of
such a method in 3D with strong surface evolutions is not realistic.

On the other hand, you can use a fixed staggered Cartesian grid (marker and cell (MAC)).
In this case, the main problem results from finding an algorithm describing precisely the
position of the interface. Different approaches exist to treat an interfacial flow on a Cartesian
grid. The first one, called the ‘marker method’ (see Daly [5,6]) consists of putting markers on
the interface at the initial time. Now you solve the Navier–Stokes equations and then,
movement of the markers in the velocity field describes the evolution of the surface between
the different fluids. To get the full interface, you have to build an interpolation between the
markers, e.g. using a spline method. This algorithm gives accurate results in two dimensions
with very simple programming. The marker technique contains, however, two principal
drawbacks: there is no conservation of mass and the 3D extension remains too difficult
because it is hard to determine a good spline surface interpolation in 3D.

Another commonly used approach to represent the interface with Cartesian grids is the
volume of fluid (VOF) method (see Hirt-Nichols [7] and Zaleski [8]). On each defined
volume-using cell centered on pressure, we consider a fractional function, called the color
function Ci,j,k, corresponding to the volume of the fluid in cell (i, j, k). The process is made up
of three steps. Knowing Ci,j,k, we build the interface as the surface discontinuity between the
fluids. We next solve the Navier–Stokes equations to obtain the new velocity field. We finally
move the interface at time n to obtain the new Ci,j,k at time (n+1). Youngs’s VOF method (see
Youngs [9]) provides very good results with a very satisfactory mass conservation. However, in
the face of strong shears, if the interface is defined on a few cells, the VOF reconstruction
brings about the appearance of scraps. Moreover, the computation requires a large investment
that makes 3D use difficult. To finish with, we cannot use VOF schemes such as Youngs for
more than two fluids.

To avoid the drawbacks of the marker and VOF methods, we choose to predict the interface
evolutions by means of solving an advection equation. We define a color function Ci,j,k equal
to 1 in each cell filled with the lth fluid, l=0, p−1 (p representing the number of fluids). The
interfaces are represented by the discontinuities of Ci,j,k. If we have a velocity field, by solving
an advection equation on the colour function we obtain the evolutions of the interfaces. The
classic schemes do not offer good enough results: a first-order upwind scheme is too diffusive
and a high-order scheme (Lax–Wendroff, Quick, . . . ) brings about oscillations due to the
strong discontinuities between the different fluids. As a consequence, these types of schemes do
not ensure a precise calculation of the interface. We have decided to apply the total variation
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UNSTEADY INTERFACIAL FLOW 797

diminishing (TVD) theory (LeVeque [10], Yee [11,12] and Hirsch [13]) to the equation of Ci,j,k.
The obtained scheme is of second-order, except near the discontinuities, where a first-order is
enforced. The results set out on the following pages show the advantages of the TVD method:
we get no oscillations, the diffusion is mainly controlled, the mass conservation is checked and
the explicit computation is easy, even in 3D.

2. GOVERNING EQUATIONS

A 3D unsteady flow is modeled by means of the dimensional Navier–Stokes equations for
incompressible fluids. In Cartesian co-ordinates, with a bounded domain V, we get

9 ·6� =0, (1)

r
�(6�
(t

+ (6� ·9)6� �=rg� −9p+9 ·
�

m
�
96� +

�
96�
�Tn�

, (2)

where 6� = (u, 6, w)T is the velocity vector, p the pressure, r the density, m the viscosity and g
the gravity.

The different fluids are located by a color function Ci,j,k. In the presence of q fluids, we
define Vl¦V as the domain containing the lth fluid (05 l5q−1). Ö(x, y, z)�Vl, we get

C(x, y, z)= l. (3)

We define the interface between the fluids l and m (05 l5m5q−1) as the average value
of C(x, y, z) for the values l and m. The surface evolutions are represented by an advection
equation on C. Ö(x, y, z)�V, we obtain

(C
(t

+6� ·9C
�

=0. (4)

Since the viscosity m and the density r of the mixed fluid are constant in each fluid, and
knowing the position of the interfaces, we reorganize r and m so as they take a different value
according to the new arrangement of the fluids. Hence, we write

if C= l then
!r=r l

m=m l

, else C=
l+m

2
and Í

Ã

Ã

Á

Ä

r=
r l+rm

2

m=
2m lmm

ml+mm

, (5)

where l and m indicate respectively, the lth and the mth fluids.

3. TVD SUPERBEE DISCRETIZATION FOR ADVECTION EQUATION

3.1. Description of the TVD SUPERBEE scheme

In this chapter, we present the treatment of the advection equation for the color function.
The classical schemes (see Hirsch [13]) are not efficient enough: a first-order scheme, Upwind
for example, is too diffusive [see Figure 1(a)]) and a high-order scheme, such as Lax–Wen-
droff, brings about oscillations [see Figure 1(b)]).
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The results described by Figure 1 show how necessary it is to build a new scheme that is able
to calculate precisely the interface. This remark is essential; indeed, the drawbacks observed in
1D will be developed in 2D or 3D. The solution follows from the following idea: as Equation
(4) is hyperbolic, a good way of solving it is to apply the mathematical theory used in
compressible fluid mechanics.

We define t as the time variable, V as the flow velocity and x as the 1D space variable.
Hyperbolic problems are characterized by two fundamental properties: the signals are spread-
ing with a finite velocity (property P1) and the representative quantities of the phenomenon
(property P2) can contain discontinuities spreading or appearing during the evolutions. P1
involves the application of a characteristic method that demonstrates the conservation of the
advection equation solutions on the x−Vt=constant lines. Obtaining an initial condition, we
know how to get the necessary information to calculate correctly the solution at time n. The
property P2 requires the use of a robust scheme that is able to be applied in the presence of
discontinuities. We also want a high-order scheme giving precise solutions. Such schemes come
from the total variation diminishing (TVD) theory (see LeVeque [10]). A TVD scheme is
characterized by the two following properties: in regular areas of the solution, the scheme is of
high-order, and near the four discontinuities, it becomes of first-order. This construction
obtains a non-oscillating scheme of high-order nearly in the whole solving domain. The
non-oscillating property is obtained by limiting the conservative flux of a high-order scheme so
as to check the TVD requirements, i.e.:%i �Ci

n+1−Ci−1
n+1�

Dx
5

%i �Ci
n−Ci−1

n �
Dx

;
.

We will now explain the way to build a TVD scheme of high-order. The 1D Lax–Wendroff
discretization of Equation (4) by a characteristic method in a finite volume approximation is
presented.

Figure 1. Simulation in 1D of the propagation at the step function C(x)= (0.5+0.5 tanh(80(x−0.1))) on a 100 mesh
grid (horizontal axis). Initially, 05C(x)51 (vertical axis). Comparison after 100 iterations between an Upwind (a),

a Lax–Wendroff (b) scheme and the analytical solution.
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� Knowing the solution Ci
n of average values on the cells, we reconstruct it by a linear

function on each cell. If g i
n is the slope of the linear reconstruction, then

Öx� [xi−1/2, xi+1/2], C0 n(tn, . )=Ci
n+g i

n(x−xi). (6)

� Using the characteristic method, we exactly solve the advection equation for C0 n(tn, . )
between the times tn and tn+1. If Dx is the space scale and Dt the time scale, we get

C0 n(tn+1, . )=C0 (tn, x−VDt). (7)

� We obtain Ci
n+1 as the average of C0 n(tn+1, . ) on cell [xi−1/2, xi+1/2]:

DxCi
n+1=

& xi+1/2

xi−1/2

C0 n(tn+1, x) dx.

Applying the characteristic method (7) with V]0, we obtain

DxCi
n+1=

& xi+1/2

xi−1/2

C0 n(tn, x−VDt) dx=
& xi+1,2−VDt

xi−1/2−VDt

C0 n(tn, x) dx.

Using the linear reconstruction (6), the solution becomes

DxCi
n+1=

& xi−1/2

xi−1/2−VDt

C0 i−1
n +g i−1

n (x−xi−1) dx+
& xi+1,2−VDt

xi−1/2

C0 i
n+g i

n(x−xi) dx

=VDtCi−1
n +

1
2

Vg i−1
n DxDt(1−Vs)+ (Dx−VDt)Ci

n+
1
2

Vg i
nDxDt(Vs−1),

where s=Dt/Dx is the CFL number.
We finally get the expression of C at time n+1:

Ci
n+1=Ci

n−Vs(Ci
n−Ci−1

n )+
1
2

VsDx(Vs−1)(g i
n−g i−1

n ). (8)

Now, we have to choose a slope g i
n and the advection equation is completely discretized by

expression (8). g i
n,LW=Ci+1

n −Ci
n/Dx corresponds to the Lax–Wendroff slope. This slope is

chosen as a reference because of the good properties of the Lax–Wendroff scheme in the
regular zones of the solution. We now study how to render TVD to the high-order oscillating
Lax–Wendroff scheme chosen, to bring it robust properties near the discontinuities. It is
possible to demonstrate that, in the three-step construction scheme (8), the solving and the
projection steps are TVD. As a consequence, in the reconstruction step, only the slope choice
can determine the TVD character of this scheme. Observing Figure 2(a), we can see that the
Lax–Wendroff slope brings about extrema near the minima or the maxima of the average cell
solution. In this case, we notice that the total variation is increasing: the Lax–Wendroff
scheme is not TVD. The idea is to limit the slope g i

n,LW= (Ci+1
n −Ci

n)/Dx, enforcing the
condition Ci�1/2

� � [Ci−1, Ci ], where Ci−1/2
− is the value for xi−1/2 of the linear cell function in

[xi−3/2, xi−1/2] and Ci−1/2
+ is the value for xi−1/2 of the linear cell function in [xi−1/2, xi+1/2].

Let us consider u i
n= (Ci

n−Ci−1
n )/(Ci+1

n −Ci
n), the new limited slope obtained is expressed as

(see Hirch [13] and Sweby [14])

g i
n,T=max(0, min(1, 2u i

n), min(2, u i
n))

Ci+1
n −Ci

n

Dx
=f(u i

n)g i
n,LW. (9)
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Figure 2. Example of 1D space reconstructions (horizontal axis) of C (vertical axis) in the case of a Lax–Wendroff
scheme (a) and of a TVD SUPERBEE scheme (b).

In fact, f(u i
n) is a correcting flux equal to 1 in the whole solving domain, except near the

extrema where this flux limits the Lax–Wendroff slope. The results obtained with g i
n,T (see

Figure 2(b)) show that the TVD properties are respected.
The TVD scheme built above is called the Lax–Wendroff TVD SUPERBEE scheme. The

final expression in 1D for any V is:

Ci
n+1=Ci

n−s max(0, V)(Ci
n−Ci−1

n )+
1
2

sDx max(0, V)(Vs−1)(f i
ng i

n,LW−f i−1
n g i−1

n,LW)

−s min(0, V)(Ci+1
n −Ci

n)+
1
2

sDx min(0, V)(Vs+1)(f i+1
n g i+1

n,LW−f i
ng i

n,LW).

(10)

Figure 3 shows the results obtained with the scheme (10) for the same case as in Figure 1.
The solution is nearly equal to the analytical solution. We have corrected the drawbacks of the
Upwind (diffusion) and Lax–Wendroff (oscillations) schemes.

We will now present some applications that will allow us to judge the performance of our
TVD scheme (10) in 2D and 3D. The 2D or 3D form of (10) is immediately deduced from a
transposition of the x-direction flux to y- and z-directions. If you solve the three directions at
the same time, some distortions appear in the diagonal directions. As a consequence, we have
cut the time scale into three parts [27]. In each part, we solve one direction. Considering Vx,
Vy and Vz as the velocities in each direction, the 3D explicit splitting Lax–Wendroff TVD
SUPERBEE scheme so obtained is

Ci, j,k
n+1/3=Ci, j,k

n −s max(0, Vx)(Ci, j,k
n −Ci−1, j,k

n )

+
s

2
Dx max(0, Vx)(Vxs−1)(g i, j,k

n,T −g i−1, j,k
n,T )−s min(0, Vx)(Ci+1, j,k

n −Ci, j,k
n )

+
s

2
Dx min(0, Vx)(Vxs+1)(g i+1, j,k

n,T −g i, j,k
n,T ),
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Ci, j,k
n+2/3=Ci, j,k

n+1/3−s max(0, Vy)(Ci, j,k
n+1/3−Ci−1, j,k

n+1/3 )

+
s

2
Dy max(0, Vy)(Vys−1)(g i, j,k

n+1/3,T−g i−1, j,k
n+1/3,T)

−s min(0, Vy)(Ci, j+1,k
n+1/3 −Ci, j,k

n+1/3)

+
s

2
Dy min(0, Vy)(Vys+1)(g i, j+1,k

n+1/3,T−g i, j,k
n+1/3,T), (11)

Ci, j,k
n+1=Ci, j,k

n+2/3−s max(0, Vz)(Ci, j,k
n+2/3−Ci, j,k−1

n+2/3 )

+
s

2
Dz max(0, Vz)(Vzs−1)(g i, j,k

n+2/3,T−g i, j,k−1
n+2/3,T)−s min(0, Vz)(Ci, j,k+1

n+2/3 −Ci, j,k
n+2/3)

+
s

2
Dz min(0, Vz)(Vzs+1)(g i, j,k+1

n+2/3,T−g i, j,k
n+2/3,T).

3.2. Validation on simple two-fluid ad6ection tests

In this section, the advection of C is not coupled to the solutions of the momentum
equations. Simple advection tests on analytical velocity fields are proposed.

� To begin with, we study the advection in 2D of a 0.15 m radius circle in a constantly
turning velocity field. This test is important because it does not favor any directions. It is a
good way of checking the validity of the scheme. We choose a time scale Dt=0.001 s on an
80×80 grid. The domain V is V is 1 m2. Ö(x, y)�V, the velocity field u� (x, y)=
(U(x, y), V(x, y)) is described by

U(x, y)= −
p

2
�

y−
L
2
�

and V(x, y)=
p

2
�

x−
L
2
�

. (12)

Figure 3. Simulation in 1D of the propagation of the step function (0.5+0.5 tanh(80(x−0.1))). Comparison after 100
iterations between the Lax–Wendroff TVD SUPERBEE scheme and the analytical solution.
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Figure 4. Advection of a circle in a turning velocity field—the figures present the initial condition on a 80×80 grid
(a) and the results after 500 (b), 1000 (c), 1500 (d), 2000 (e) and 20000 (f) iterations. (Visualization of the iso-values

0.01 and 0.99 of C.)

The results obtained (Figure 4) are spreading with good velocity and with a 10−5 mass
conservation error, which is quite satisfactory. After one turn (2000 iterations), the geometry
of the circle is pretty good with respect to the initial condition. Even after ten turns, the
simulation still has a good performance, even if a small deformation appears (due to the
constraints of the Cartesian grid). We notice that the diffusion of the explicit splitting TVD
SUPERBEE Lax–Wendroff scheme (11) is fixed during the calculations (two cells), which
appears very interesting.

� The second application we decided to set out is Zalesak’s problem: a slotted circle rotates
in a constant turning velocity field (12). As explained by Rudman [15], this test is considered
a difficult simulation for scalar advection methods. Indeed, near the sharp corners there are
not enough cells to resolve the advection equation correctly with our TVD scheme. We present
the calculations after one turn on a 150×150 grid with Dt=0.002 s. The diameter of the circle
is 0.8 m and the domain is 1 m2.

The results obtained (see Figure 5) are in good agreement with the exact solution with a
mass conservation error equal to 10−5. Even if a Eulerian numerical scheme cannot resolve
perfectly the singularity at the sharp corners moving in a turning velocity field, the problem is
solved well through the TVD scheme that maintains a consistent interface shape. The diffusion
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Figure 5. Simulation of Zalesak’s problem on a 150×150 grid—description of the initial condition (a) and of the
result after one turn (approximately 5000 iterations (b). (Visualization of the iso-values 0.01 and 0.99 of C.)

is concentrated on two cells and stays on two cells during the calculations, which corresponds
to the good property observed in the previous test.

� The third test consists in translating a 0.2 m side square. Two velocity fields are
considered: the first one is aligned with the co-ordinate axes, whereas the second one forms an
angle of 45° with the axis. The velocity magnitude is equal to 1 m s−1 in both cases. The
simulation is done on a 100×100 grid with Dt=0.001 s. The domain is 1 m2.

We can easily check that the translation is perfectly calculated through the TVD scheme,
with a 10−5 mass conservation error, similar to the previous tests. Moreover, the diffusion is
not dependent on the x- or y-axis, and stays on two cells during the solving iterations without
growing (see Figures 6(b) and 7(b)).

In Section 4, to avoid the distortions due to the Cartesian grid, we have chosen to split one
solving time step into several parts, each part resolving the problem in 1D (x, y or z). The
results coming from the previous choice are very good and no distortions appear in the oblique
translation (see Figure 7(b)).

� The first three tests we have presented have shown the very good properties of the TVD
scheme for interfaces moving without deformations. To get a complete description of the
phenomena dealing with interfacial flows, we have to study the case of topological change in
the solution. It is very important to have the possibility of calculating the interface in the

Figure 6. Translation of a square in an horizontal velocity field with a 100×100 grid—description of the initial
condition (a) and of the result after 500 iterations (b). (Visualization of the iso-values 0.01 and 0.99 of C.)
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Figure 7. Translation of a square in an oblique velocity field with a 100×100 grid—description of the initial
condition (a) and of the result after 500 iterations (b). (Visualization of the iso-values 0.01 and 0.99 of C.)

presence of shearing flows because they are often found in physical experiments. The
simulation consists in deforming a circle in a shearing velocity field. We choose a 150×150
grid on a 1 m long square domain, with Dt=0.001 s. If (x, y)� [0, 1]× [0, 1] is a point in the
square domain and (x0, y0)� [0, 1]× [0, 1] are the co-ordinates of the domain center, the
velocity field u� (x, y)= (U(x, y), V(x, y)) is defined as

U(x, y)=K cos(p(x−x0)) sin(p(y−y0)) and

V(x, y)= −K sin(p(x−x0)) cos(p(y−y0)), (13)

where K is a fraction constant of p.
In this case, the initial circle is deformed (see Figure 8(b) and (c)) during N iterations; we

reverse the sign of the shearing velocity field (17) and we perform N iterations more (see Figure
8(e) and (f)). After N steps forward followed by N steps backward, a perfect solving would give
the initial condition. With N=1000 (see Figure 8(b) and (e)), we get a very satisfying solution:
indeed, the diffusion due to the distortion (Figure 8(b)) does not damage the final result
(Figure 8(f)), which fits well the initial solution (the solution with N=1000 is almost as good
as in translation or rotation tests). If we take N=4000 (see Figure 8(c) and (f)), the results are
less precise. In fact, the stretching out zones of the interface, coming from the strong
distortions, do not give enough solving points to the TVD SUPERBEE scheme. In these zones,
the TVD SUPERBEE scheme detects almost all extrema in the color function. Consequently,
it is always of first-order and therefore diffusive (see Figure 8(c)). The solution after 4000 steps
backward is physically coherent but some diffusion and some distortions have appeared. They
are the direct consequence of the difficulties described before.

� To finish with, we test a 3D advection: a sphere is submitted to a rotation velocity field.
If V is a cubic domain, Ö(x, y, z)�V, the velocity field is described by the three components of
u� (x, y, z)= (U(x, y, z), V(x, y, z), W(x, y, z)):

U(x, y)= −
p

2
�

y−
L
2
�

, V(x, y)=
p

2
�

x−
L
2
�

and W(x, y)=0. (14)

The test consists of advecting a sphere in a turning roller velocity. V is a 1 m side cubic
domain. We choose a 32×32×32 grid with Dt=0.01 s. The results obtained (see Figure
9(a)–(f)) are very interesting because the TVD SUPERBEE scheme provides results in 3D with
the same good properties as in 2D, without any programming work. The sphere is advected
correctly with a 10−4 mass conservation error. If we look to a z=0.5 m plane cut (see Figure
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9(g)–(i)), we discover that the diffusive zones at the interface after one turn (see Figure 9(e))
and after five turns (see Figure 9(f)) are not more important than in 2D (see Figure 4). In fact,
the diffusion stays on two cells during the calculations in 2D and in 3D.

After one turn (Figure 9(e)) and after five turns (Figure 9(f)), the morphology of the sphere
remains correct, without any distortions: we can say that the splitting scheme in 3D is as
efficient as the one in 2D. Figure 9(g)–(i) show that some deformations of the sphere appear
during the calculations. This phenomenon is principally due to the weak precision of the grid,
which makes the initial condition not very precise. To get better results, it will be sensible to
take a refined grid (80×80×80, for example). Then we could expect to get a precise solution
with a good interface definition.

4. HYBRID SOLVING METHOD FOR NAVIER–STOKES EQUATIONS

We will now set out the method we have used to solve numerically the incompressible viscous
Navier–Stokes equations (1) and (2). In our simulations, an augmented Lagrangian or a

Figure 8. Advection of a circle in a shearing velocity field on a 150×150 grid: (a) presents the initial condition, (d)
is the velocity field, (b) and (e) show the results of the calculations after 1000 iterations with the velocity field (13) and
1000 iterations more with a reverse sign in (13), and (c) and (f) describe the solution after 4000 iterations with the
velocity field (13) and 4000 iterations more with a reverse sign in (13). (Visualization of the iso-values 0.01 and 0.99

of C.)
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Figure 9. Advection of a sphere in a turning velocity field on a 32×32×32 grid (a) presents the initial condition in
3D, (b)–(f) show the results of the calculations in 3D after 100, 200, 300, 400 and 2000 iterations respectively, (g–(i)
describe a cut in the z=0.5 m plan for the initial condition and the solution after 400 and 2000 iterations.

(Visualization of the iso-value 0.5 of C from (a) to (f) followed by the 0.01 and 0.99 one from (g) to (i).)

projection method are not efficient because of the strong density and viscosity gradients near
the interface. The augmented Lagrangian (see Fortin and Glowinsky [2] and Nicolas [16])
solves the Navier–Stokes equations correctly in each of the fluids (the mass balance is
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verified), but near the interface, Equation (2) is not calculated with sufficient precision and
there is no continuity on the velocities. Concerning the projection method (see Goda [1]), the
method requires a lot of iterations to solve the Poisson equation and get a velocity field
verifying div(u)=0, with a 10−13 error. Moreover, the presence of Dirichlet boundary
conditions in our problems destabilizes the projection solving, which is well-formulated for
Neumann boundary conditions (Peyret and Taylor [17]).

To improve the projection method, we choose to use the augmented Lagrangian as a
valuator of the auxiliary velocity and pressure in the first step of the projection method. As a
consequence, we obtain the unknowns correctly estimated at the boundary conditions and in
the fluids. The second step, in which we solve a Poisson equation, allows us to get a very good
mass balance, even near the interface: the Poisson equation acts as a smoothing operator on
the new velocity field calculated in a third step.

Considering Euler schemes of first-order on the time operators and taking an auxiliary
velocity U* and a corrective pressure P*, the hybrid method is written as:

� (I) A predictive step with the augmented Lagrangian

pn+1/2=pn−s9 ·U* ,n+1. (15)

The pressure (6) estimated at (n+1)Dt is expressed in the momentum equation.

(U*
(t

+Un ·9U* ,n+1−
r
r

9(9 ·U* ,n+1)

= −
1
r

9pn+g−
1
r

9 · [m(9U* ,n+1+9tU* ,n+1)]. (16)

We define P*,n as pn+1/2.
� (II) A projection step with the Poisson equation

9 ·
�9p*

r

�
= −9 ·U* ,n+1,

(p*
(n

=0. (17)

� (III) An evaluation step at time (n+1)Dt

Un+1=
�

U* ,n+1−
Dt
r

9p* ,n+1�, pn+1=p* ,n+p* ,n+1. (18)

The parameters s and r control the numerical treatment of incompressibility. The al-
gorithm (15)–(18) allows us to solve the Navier–Stokes equations with different methods:
taking r=0 and s=r, we get the projection method, taking 0Br�1 and s=r, we obtain
the hybrid solving method, and taking r of first-order (switching steps (II) and (III)) and
s=r, we use the augmented Lagrangian method. We can even solve the problem by means
of an Uzawa algorithm, taking r=0 and 0Bs�1, switching steps (II) and (III).

The hybrid method permits the use of both Neumann and Dirichlet boundary conditions.
In the first step of the hybrid method, we choose an iterative BICGSTAB solver (biconju-
gate stabilized gradient) with a preconditioning based on a modified and incomplete Gauss
factorization MILU (see Van Der Vorst [18] and Gustafssons [19]) to calculate the Navier–
Stokes equations by an implicit augmented Lagrangian. The hybrid method has been vali-
dated in different simulations (natural convection [20], flows around a cylinder, . . . ).
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5. SIMULATION OF VISCOUS TWO-FLUID INTERFACIAL PROBLEMS WITH
THE COUPLED HYBRID/TVD SUPERBEE METHOD

The study proposed in this section presents two main interests: firstly, the strong viscosity and
density gradients represent a physically hard problem for the method described above, and
moreover, the research in numerical solving methods for difficult interfacial problems corre-
sponds to an important industrial request. The experiment corresponds to a Newtonian jet
filling a square box, open in its upper part. Initially, the cavity is full of air. We wish to study
the evolution of the jet morphology in accordance with the velocity inlet and the box
dimensions.

The characteristics of the simulations are as follows:

Liquid
Viscosity=300–600 Pa s
Density=1800 kg m−3

Air
Viscosity=1.85×10−5 Pa s
Density=1.1768 kg m−3

Experiment 1:

Square cavity of size 1×1 m2

Inlet velocity equal to 1 m s−1 and inlet width equal to 0.12 m
Liquid viscosity equal to 300 Pa s
Re=0.72
H/D=8.33

Experiment 2:

Square cavity of size 1×1 m2

Same inlet velocity, and inlet width equal to 0.1 m
Liquid viscosity equal to 500 Pa s
Re=0.36
H/D=10

If we refer to the article of Tomé et al. [21], we get a physical criterion that establishes the
experiments with buckling jets. This criterion is based on experimental and approximate
theoretical results. It has been argued that for a planar jet (2D), buckling will occur if the
following restrictions are satisfied:

ReB0.56

and
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H
D
\3p, (19)

where Re is the Reynolds number based on the slit width D, and H is the height of the inlet
above the bottom of the cavity.

A comparison with (19) shows that experiment 1 does not correspond to a buckling jet,
whereas experiment 2 does. We will discover next that the simulations are in agreement with

Figure 10. Simulation of a jet injected in a square cavity on a 80×80 grid—the columns (a) (the interface) and (b)
(the velocity field) present the results after 400, 600, 1400 and 2800 iterations for a 1 m s−1 velocity imposed on the
inlet with a 1 m square cavity and the columns (c) (the interface) and (d) (the velocity field) describe the solution after
500, 1500, 2200 and 2600 iterations for a 1 m s−1 velocity imposed on the inlet with a 1 m square cavity.

(Visualization of the iso-value 0.5 of C.)
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the theoretical criterion (19). Indeed, Figure 10(a) and (b) (experiment 1) show a jet flowing
laterally and filling the cavity. As expected in (19), there is no buckling. Now, if we observe the
simulation results corresponding to experiment 2 (Figure 10(c) and (d)), we get a buckling jet
going from right to left alternatively. In this case, the Newtonian fluid accumulates, obstructs
the oncoming fluid and leads to buckling. The striction phenomenon is well-retranscribed in
both experiments, which means that we correctly anticipate the viscous and the gravity effects.

The numerical calculations with the hybrid method provide a very good velocity field
(Figure 10(b) and (d)). The velocities in the inlet jet must become almost zero near the bottom
part of the cavity. We can also see the ejection of air by the opened upper part of the cavity.
Concerning the interfacial treatment, the results are quite satisfying. Indeed, on a reasonable
grid (80×80), the explicit TVD method gives a good description of the interface by means of
the 0.5 iso-value of the color function. We have not met with particular problems due to the
numerical treatment of the interface, except perhaps with the weak diffusion appearing during
the calculations (as explained in Section 4). To finish with, we can say that the symmetry of
the numerical flow solutions, observed in the first experiment, testifies to the good solving of
the problem with the coupled hybrid/TVD method.

6. CONCLUSION AND DISCUSSION

In this paper, we have proposed a hybrid solving method for the Navier–Stokes equations that
has demonstrated its very efficient behavior when solving difficult unsteady incompressible
interfacial flows. This point is very important because it conditions the solving of the
interfacial evolutions: indeed, the surface between two or more fluids moves in conjunction
with the velocity field due to the solving of Navier–Stokes equations.

The second approach detailed in this article was the solving of an advection equation on a
color function to describe the evolutions of the interfaces. The explicit splitting TVD
SUPERBEE method chosen has shown very interesting results with a weak mass conservation
error, no oscillations due to the discontinuities appearing near the interface, with a controlled
diffusion and an easy explicit computation. The scheme has been fully validated in 1D, 2D and
3D. The performance on the physical simulation has proved how interesting it is in the
presence of strong stretching out zones, particularly for the future 3D tests.

The calculation of a 3D jet will be the next work to be done: this is one of the main
motivations of this study. The results obtained in the validations make us optimistic with
regard to the good behavior of the coupled hybrid/splitting TVD SUPERBEE method in 3D.
Another physical context that has to be developed is multiphase flow problems (with the 3D
context, it is our other strong motivation). Indeed, these problems are easy to define with a
color function, as explained in Section 2. If there is N fluids, the advection equation solves the
color function evolutions in presence of N fronts. To finish with, it will be interesting to treat
the surface tension in case our jet problem is about a weak velocity inlet. To do so, a tensor
term is added in the momentum conservation equation acting as a volume force on the free
surface (Brackbill [22]). We have validated the coupled hybrid/TVD method with the surface
tension treatment on experimental measurements (Martin and Moyce [23]). Qualitative and
quantitative comparisons show good agreements between experimental and numerical results.

Some numerical improvement will be probably done using ENO schemes instead of the
TVD SUPERBEE method (see Wang and Osher [24] and Perrel [26]). Indeed, the diffusion
appearing in the strong stretching out zone will be reduced with these new schemes. The
adaptation of a level set method to our problem (if it is possible to think of the 3D context

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 795–811 (1999)



UNSTEADY INTERFACIAL FLOW 811

with multiphasic flows) would certainly be the best solution to define precisely the evolutions
of the interfaces (see Sussman and Smereka [25]).
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